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Knowledge of spatiotemporal distribution and likelihood of (re)occur-
rence of salt-affected soils is crucial to our understanding of land deg-
radation and for planning effective remediation strategies in face of
future climatic uncertainties. However, conventional methods used for
tracking the variability of soil salinity/sodicity are extensively localized,
making predictions on a global scale difficult. Here, we employ
machine-learning techniques and a comprehensive set of climatic, to-
pographic, soil, and remote sensing data to develop models capable
of making predictions of soil salinity (expressed as electrical conduc-
tivity of saturated soil extract) and sodicity (measured as soil ex-
changeable sodium percentage) at different longitudes, latitudes,
soil depths, and time periods. Using these predictive models, we pro-
vide a global-scale quantitative and gridded dataset characterizing
different spatiotemporal facets of soil salinity and sodicity variability
over the past four decades at a ∼1-km resolution. Analysis of this
dataset reveals that a soil area of 11.73 Mkm2 located in nonfrigid
zones has been salt-affected with a frequency of reoccurrence in at
least three-fourths of the years between 1980 and 2018, with 0.16
Mkm2 of this area being croplands. Although the net changes in soil
salinity/sodicity and the total area of salt-affected soils have been
geographically highly variable, the continents with the highest salt-
affected areas are Asia (particularly China, Kazakhstan, and Iran),
Africa, and Australia. The proposed method can also be applied for
quantifying the spatiotemporal variability of other dynamic soil prop-
erties, such as soil nutrients, organic carbon content, and pH.

soil salinization | soil salinity | soil sodicity | machine learning | global scale
modeling

Soil salinization is one of the main land-degrading threats
influencing soil fertility, stability, and biodiversity. Saline soils

are ones with excess accumulation of soluble salts in the root zone
(1). On the other hand, accumulation of high levels of sodium salt
relative to other exchangeable cations is the main attribute of
sodic soils (2). Wind, rainfall, and parent rock weathering are the
main origins of these salts in “primary” soil salinization, whereas in
“secondary” soil salinization excessive salt accumulation is human-
induced (3). Saline and sodic soils, or in general salt-affected soils,
mostly lie across arid and semiarid climates where the dominance
of evaporation over precipitation concentrates the salts in the root
zone (1, 4), leading to undesirable alterations in the physical,
chemical, and biological functions of the soil (5, 6). Sodicity ad-
versely influences the soil infiltration capacity (7), increases the
susceptibility of water and wind-blown erosion (8), and exposes
more soil organic matter to decomposing processes (9). Soil sa-
linity, on the other side, distresses the soil respiration, nitrogen
cycle, and decomposing functionality of soil microorganisms (9,
10). Salinity stress affects the vegetation growth directly by re-
ducing the plant water uptake (osmotic stress) and/or by deteri-
orating the transpiring leaves (specific ion effects) (11), in turn
reducing organic input to the soil and ultimately leading to de-
sertification of lands (12, 13). Under extreme conditions, disper-
sion of saline dust (8, 14), poverty, migration, and high costs of soil
reclamation are long-term socioeconomic consequences of soil
salinization (15).

Soil salinity and sodicity levels are spatially, vertically, and
temporally dynamic (15, 16), particularly at the top 0- to 30-cm soil
layer which is substantially affected by governing climatic condi-
tions. Naturally occurring events, such as flash floods, El Niño and
La Niña, alternative wet and dry years, and long periods of drought
can considerably affect soil salinization and accumulation/leaching
of the salts in/from the root zone at daily to multiyear temporal
resolutions. Similarly, anthropogenic activities like irrigation and
dryland management can affect soil salinization at different tem-
poral resolutions. Given the high dynamism in soil salinization
processes, updated spatial and temporal information on the extent
of salt-affected soils is indispensable for devising appropriate sus-
tainable action programs for managing land and soil resources (6,
17–19). This information can be also valuable for enhancing our
understanding of terrestrial carbon dynamics (7, 20), food security
and agricultural modeling (21, 22), climate change impacts (23, 24),
water resources and irrigation management (25, 26), and efficiency
of organic/inorganic reclamation practices (27, 28). Several statis-
tics on the global distribution of salt-affected soils (17–19, 29–33)
have been generated based on data from soil surveys and statistical
extrapolation (1, 19), yet these estimations are mainly purely spatial
(17, 34), not necessarily up-to-date (15, 17), and in some cases
incomparable (3, 35). Therefore, there is still a need for a meth-
odologically consistent dataset documenting long-term variations
of the soil salinity and sodicity at high spatial resolutions (36)
To address this need, we focused on two target variables:

ground-derived measurements of soil ECe (the ability of a water-
saturated soil paste extract to conduct electrical current,
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representative of salinity severity) and ESP (exchangeable so-
dium percentage, representative of sodicity severity). We used
42,984 and 197,988 data, respectively, scattered over time from
1980 to 2018. We trained two-part predictive models for making
four-dimensional (4D) predictions of soil salinity and sodicity as
target variables (longitude, latitude, soil depth, and time; see
Methods). Through mapping data-driven relations between soil
ECe/ESP observations and a collection of associated predictors
generated from topographic, climatic, vegetative, soil, and land-
scape properties of the sampling locations (SI Appendix, Table
S1), these two-part models enabled us to make long-term gridded
predictions of soil salinity and sodicity at new locations with
available predictors’ values. Note that “prediction” refers to the
estimation by the trained models of soil salinity/sodicity on a
global scale from 1980 to 2018 even in locations where there is no
measurement available rather than to future projection of soil
salinity/sodicity on the basis of current trends. The first part of the
models classified the soil into saline/sodic and nonsaline/nonsodic
classes (binary classification) and the second part predicted per-

class severity of the salinity/sodicity issue (regression). Meaningful sta-
tistics derived from the ECe and ESP predictions were then used to
generate univariate thematic maps of the variability of different aspects
of soil salinity/sodicity between 1980 and 2018 at ∼1-km spatial reso-
lution (30 arc-seconds; e.g., Fig. 1). These were delimited to −55° and
55° latitudes, comprising tropics, subtropics, and temperate zones (see
Data Availability). We focused on the topsoil layer (or surface soil),
referring to the top 30 cm of the soil profile measured from the surface.

Validation of the Predictive Models
SI Appendix, Fig. S1 A–D and Table S2 illustrate the performance
of the two-part fitted models in prediction of target variables.
During the training of the classifier, any soil with ECe ≥2 dS·m−1

and ESP ≥1% was labeled as saline and sodic class, respectively.
The overall accuracy for the saline/nonsaline soil classifier
evaluated by 10-fold cross-validation (10-CV) was 89.65% (88.33
to 88.87%) and for the sodic/nonsodic soil classifier it was
85.59% (85.05 to 85.24%); the values in parentheses show the
lower and upper bounds for 95% confidence intervals. The

Fig. 1. Variability of different aspects of soil salinity and sodicity in the western United States. (A and D) SD of annually predicted soil salinity (ECe) and
sodicity (ESP), respectively, between 1980 and 2018. (B and E) Average of annually predicted ECe and ESP, respectively (1980 to 2018). (C and F) Change in the
likelihood (θ) of soils with an ECe ≥4 dS·m−1 or ESP ≥6% in the period 2000 to 2018 relative to 1981 to 1999 (the likelihood is dimensionelss, calculated by
dividing the number of years with ECe ≥4 dSm−1 or ESP ≥6% by the total number of years in the studied period). Positive θ indicates that the likelihood has
increased and negative shows that it has decreased.
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average per-class user’s accuracies (probability that predictions
represent reality) for the salinity classifier was 88.3% and for the
sodicity classifier 85.5%. The prediction errors evaluated by
10-CV normalized root-mean-square (normalized by range) was
8.82% (9.02 to 9.17%) for the regression model fitted to ob-
servations in the saline class and 6.94% (7.09 to 7.20%) for the
regression model fitted to the sodic class.
To further evaluate the performance of our models, we com-

pared our predicted soil surface ECe/ESP with the corresponding
ECe/ESP outcomes of the often-cited global dataset of soil sa-
linity/sodicity: Harmonized World Soil Database (19) (HWSD;
SI Appendix, Fig. S1 E and F). To do so, we evaluated the outputs
of our predictive models and HWSD surface estimations of ECe
and ESP against the available measured surface values of ECe
and ESP. Any available ECe or ESP measurement from 1980
with zero upper-sample depth and a maximum lower-sample
depth equal to 30 cm was used in this analysis. The coefficient
of determination (R2) between the predictions of our two-part
model and 9,293 measured surface values of ECe was 0.83, while
for HWSD it was 0.12. Likewise, R2 between 30,491 surface
measurements of the ESP and our predictions was 0.86, while it
was 0.26 for HWSD.
Moreover, we investigated the relationship between the

catchment-level average of soil salinity estimations for three
continents, Australia, Africa, and North America, predicted by
our trained models and the dryness index (the ratio of long-term
potential evapotranspiration to rainfall); the results are pre-
sented in SI Appendix, Fig. S2. This figure shows higher predicted
salinities in drier climates (locations with higher dryness index)
where excessive evapotranspiration leads to accumulation of the
soluble salts in the soil root zone. The trend observed in SI
Appendix, Fig. S2 is in agreement with the physically based
modeling results reported in Porporato et al. (37) for estimation
of primary soil salinity in the soil root zone as a function of the
dryness index. SI Appendix, Fig. S2 provides additional verifica-
tion of the validity our model predictions.

Importance of Predictors
The importance of each predictor in the models developed in
this study as well as how the predicted target variables depend
partially on these predictors were investigated, which provided
some mechanistic insights on possible influential parameters in-
volved in soil salinization processes (SI Appendix, Fig. S3 and
Table S5). In general, soil classification, depth, fraction of absor-
bed photosynthetically active radiation (FAPAR) as a vegetation
cover indicator, and temperature of different soil layers were the
predictors highly correlated with target variables. Among 43 pre-
dictors, the most important predictors in estimation of ECe values
were FAPAR (10%), lower sample’s depth (6.69%), soil’s layer
four (indicating the layer of soil lying between 100 and 289 cm
below the surface) temperature (5.93%), soil clay content
(5.68%), and the World Reference Base (WRB) soil classes
(5.63%). From various WRB soil classes, the predicted salinity of
Haplic Kastanozems and Haplic Leptosols was the highest. On the
other hand, for prediction of ESP, the most significant predictors
were WRB soil classes (15.96%), lower sample’s depth (8.27%),
upper sample’s depth (7.18%), FAPAR (3.43%), and soil’s layer
three (indicating the layer of soil lying between 28 and 100 cm
below the surface) temperature (2.69%). Also, Gleyic Podzols and
Haplic Podzols showed the highest levels of predicted sodicity
among the WRB soil classes. Our results suggest that FAPAR can
be a better index for mapping soil salinity than normalized dif-
ference vegetation index (NDVI), which has been conventionally
used as an indirect remote sensing indicator of soil salinity (6, 38).
Partial dependency plots (SI Appendix, Fig. S3) show how the main
individual parameters involved in soil salinization processes, for
example climate, soil temperature, water table depth, and vegeta-
tion, will affect the estimated values of the soil salinity/salinity, by

marginalizing over the other predictors. These make the results
suitable for evaluation of the risk of soil salinization in response to
future change in key drivers of soil salinity, such as future climates
and land cover.

Variability of Soil Salinity/Sodicity
Traditionally, threshold values of ECe and ESP have been used
as primary indicators for distinguishing saline, sodic, and
saline–sodic soils (showing properties of both saline and sodic
soils) (3, 39). However, depending on the soil classification sys-
tem, threshold values can be 4 (1, 40), 15 (41) (Solonchaks), or
even 30 (42) (salic) dS·m−1 for ECe and 6% (43, 44) or 15%
(40–42) (Solonetz or natric) for ESP. In addition, the dis-
tinguishing characteristics of saline and sodic soils are not limited
only to the values of ECe and ESP and other soil physiochemical
properties, such as pH, salt content, SAR (sodium absorption
ratio), and permeability, should be taken into consideration (1,
29). For example, the Soil Science Society of America (45) de-
fines sodic soils as nonsaline soils with enough concentrations of
exchangeable sodium that can adversely affect crop productivity
with a saturation extract SAR ≥13, rather than adopting any ESP
threshold. Therefore, in the present study, we quantified vari-
ability in areas affected by salinity and sodicity by focusing only
on soils’ ECe and ESP. An ECe equal to 4 dS·m−1 and an ESP
equal to 6% were considered the critical thresholds, corre-
sponding to the lower agronomic limits tolerable by crops (19).
Note that (re)occurrence of a soil with high salinity in a year
means the salinity of that soil in that particular year is ≥4 dS·m−1.
Similarly, (re)occurrence of a soil with high sodicity means the
ESP of that soil in that particular year is ≥6%. Additionally, we
assumed soils at a particular location are salt-affected if the
annual predicted ECe of that location is ≥4 dS·m−1 and/or its
predicted ESP is ≥6% in at least 75% of the years between 1980
and 2018. It should also be noted that all of the statistics on salt-
affected soils provided here were computed for the world’s
nonfrigid zones, located in the latitudes between −55° and 55°.
Based on the calculated likelihood of annual reoccurrence of

salt-affected soils (Fig. 2 and SI Appendix, Figs. S8–S11; ranges
between 0 and 1), we estimated that an area of 5.9 Mkm2 had an
ECe ≥4 dS·m−1 in at least three-fourths of the period from 1980
to 2018. Assuming 2 dS·m−1 as the lower tolerable limit of sa-
linity, this area increases to 7.62 Mkm2. During that period,
however, an area of 9.18 Mkm2 had an ESP ≥6% in at least
three-fourths of the years; this area would reduce drastically to
0.13 Mkm2 if the threshold value for sodicity were fixed at 15%.
Globally, the likelihood of reoccurrence of soils with ECe ≥4
dS·m−1 in the period from 2000 to 2018 was 0.94 of the period
from 1981 to 1999 (SI Appendix, Fig. S4). This value was 0.97 for
the soils with ESP ≥6%. In total, we estimate that an area of
11.737 Mkm2 was salt-affected in the period from 1980 to 2018.
Note that this is ∼25% higher than the often-cited approxima-
tion of Szabolcs (29) and 41% greater than the Food and Agri-
culture Organization’s estimation in 2000 (3, 46). At the
continental level, Asia (including the Middle East) had the largest
area of salt-affected soils with 7.14 Mkm2, followed by Africa with
2.292 Mkm2, Australia and Oceania with 1.313 Mkm2, South
America with 0.527 Mkm2, North America with 0.422 Mkm2, and
Europe with 0.024 Mkm2. In terms of the area of salt-affected
lands, the top-ranking countries were China with 211.74 Mha,
Australia with 131.40 Mha, Kazakhstan with 93.31 Mha, and Iran
with 88.33 Mha (SI Appendix, Table S3).
Our analysis showed that globally 16.49 Mha of the salt-

affected lands were located on croplands over the period from
1980 to 2018. This represents 0.88% of the global cultivated area
in 2015, according to the GFSAD30CE V001 dataset (https://
croplands.org/home). Cropland was considered here as any stretch
of the land with at least 60% cultivated area from 1993 to 2018
and no distinction was made between irrigated and nonirrigated
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croplands. Our estimated value was 31.3 to 62.7% (7.52 to 28.25
Mha) lower than in the previous assessments (31, 47), although
those focused on the world’s irrigated lands. A large majority
(536.1 Mha) of the salt-affected areas were located in barren areas
(SI Appendix, Table S4). The next-most salt-affected land-cover
types were open shrublands (144.12 Mha; dominated by woody
perennials 1 to 2 m height, 10 to 60% cover) and grasslands (77.37
Mha). At 10.16 Mha, evergreen broadleaf forests had the largest
salt-affected area among different forested land-cover types. At the
biome level, 928.23 Mha of the salt-affected lands were in de-
serts and xeric shrublands, followed by montane grasslands and
shrublands (86.45 Mha). With respect to climatic conditions, 92%

of the salt-affected areas were located in the regions with arid
climate and 4.72% in polar tundra. The latter are mostly located in
northwest China and north of Himalaya and have high levels of
the sodicity.
Only South America with ∼9,466 km2·y−1 had a statically

significant increasing trend in the total area of soils with ECe ≥4
dS·m−1 (P < 0.05; Fig. 3 and SI Appendix, Table S20). However,
all continents with a statistically significant trend in the area of
soils with ESP ≥6% showed an increasing trend; the highest rate
of increase was found for Asia with ∼5,616 km2·y−1 (P < 0.05; SI
Appendix, Table S21). Although the strong regional variations are
obscured by continental summaries, the overall observed trends

Fig. 2. Global distribution of salt-affected soils (excluding the frigid zones). (A and E) Likelihood of the surface soils with an ECe ≥4 dS·m−1 and ESP ≥6%
between 1980 and 2018, respectively (the likelihood is dimensionelss, calculated by dividing the number of years with ECe ≥4 dS·m−1 or ESP ≥6% by the total
number of studied years). The panels on the right (D and H) and below (C and G) the maps show the total area of soils with an annual predicted ECe ≥4 dS·m−1 and
ESP ≥6%, respectively, in at least 75% of the period between 1980 and 2018 for different longitudes and latitudes at 30 arc-second resolution (∼1 km). (B and F) Total
area of the soils with an annual predicted ECe ≥4 dS·m−1 and ESP ≥6%, respectively, in at least 75% of the period from 1980 to 2018 at the continental level.

33020 | www.pnas.org/cgi/doi/10.1073/pnas.2013771117 Hassani et al.
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and fluctuations may be related to the complex coupling between
the surface soil salinity and multiyear climatic patterns or extreme
environmental events. For instance, the substantial fluctuations of
the salt-affected areas in Australia over relatively short time periods

from 1998 to 2015 may be associated with continent-wide variations
of the hydrology between dry and wet periods as a result of the El
Niño–Southern Oscillation Cycle (48) (Fig. 3 C and I). Particularly
in arid and semiarid regions, the fluctuations in salinity levels can be

Fig. 3. Variations in the total area of salt-affected soils between 1980 and 2018 at the continental level. (A–F) Variations in the total area of soils with salinity
of ECe ≥4 dS·m−1. (G–L) Variations in the total area of soils with sodicity of ESP ≥6%. Red lines show the low-pass-filtered (5-y running window) variation of
the annual salt-affected areas. Mean values indicate the total area of salt-affected land on each continent averaged from 1980 to 2018.

Hassani et al. PNAS | December 29, 2020 | vol. 117 | no. 52 | 33021
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confirmed by the stochastic salinization model of Suweis et al. (24).
Assuming constant soil and vegetation properties they concluded,
for instance, that the probability of having a soil with root zone
salinity >4 dS·m−1 with the rainfall frequency of 0.15 d−1 was ap-
proximately four times higher than the rainfall frequency of 0.2 d−1

(with mean rainfall depth of 1.79 cm).
The trends in the total area of soils with ECe ≥4 dS·m−1 were

statistically meaningful (P < 0.05) for only 117 out of 256 countries/
states (Fig. 4), among which the following had the highest rate of
annual increase: Brazil (∼5,637 km2·y−1), Peru (∼2,308 km2·y−1),
Sudan (∼2,294 km2·y−1), Colombia (∼2,007 km2·y−1), and Namibia
(∼1,483 km2·y−1). For sodicity (ESP ≥6%), the number of coun-
tries/states with a statistically significant trend of variation in the
total area reduces to 70, with the highest values since 1980 esti-
mated for Iran (∼3,499 km2·y−1), Saudi Arabia (∼2,256 km2·y−1),
Argentina (∼2,012 km2·y−1), Afghanistan (∼1,483 km2·y−1), and the
United States (∼1,316 km2·y−1).
In summary, the dataset, models, and analyses presented here

quantified the global long-term variations of topsoil ECe and
ESP as respective indicators of soil salinity and sodicity at a high
spatial detail, given the limited availability of spatiotemporal
data on soil salinity and sodicity. The proposed 4D modeling
approach for predicting soil ECe and ESP provides insights into
the most influential environmental factors involved in soil sali-
nization processes. Our findings indicate that the total area of
salt-affected soils has been temporally and geographically highly
variable in the studied period (1980 to 2018), showing both de-
creasing and increasing trends at the national to continental
scales. This sheds light on this topic, given that the general
agreement in the literature is that the salt-affected areas are
expanding (17, 49). These data and the estimated statistics on
salt-affected areas can support decision-making under current
and future climate scenarios (34) and direct national and inter-
national land-reclamation efforts (18). Baseline estimates of the
soil salinity and sodicity can also inform large-scale crop and
agroecological models aimed at determining the impact of land
degradation and climate change on the food production security
(50). These data can also be valuable for soil classification studies
(39) and development of a more robust response to climate
change in soil salinization hotspots. Ultimately, existing models of
terrestrial carbon cycling should benefit from the detailed data of
soil salinity change (7) provided through this work.

Limitations of the Models and Recommendations for Further
Research
From the map producers’ standpoint, the reliability of the esti-
mated soil surface ECe and ESP might differ at the continent level
and this can be attributed to an uneven spatial distribution of the
input soil profiles data used for training the model (SI Appendix,
Fig. S5). Spatial heterogeneity of the soil profile/sample data is a
major limitation and source of uncertainty in all digital soil
mapping techniques (19, 51, 52). Spatial clustering of the training
soil profile data is also reported as a major limitation by Ivushkin
et al. (17) and Hengl et al. (53), who have used machine-learning
(ML) algorithms for digital soil mapping. The majority of soil
profiles are sampled from agricultural lands, and areas such as
mountaintops, steep slopes, deserts, sand dunes, and dense trop-
ical forests are considerably undersampled.
In the present study, to quantify how the spatial heterogeneity

in the original training sets introduces biases in our analysis we
evaluated the performance of our model at the continental level.
Comparisons between the measured surface values of soil ECe
and ESP and the values predicted by the two-part models developed
in this study as well as the values presented by the HWSD (19) can
be found in SI Appendix, Figs. S21 and S22 at the continental level.
Coefficients of determination between the measured values and
predictions are provided for each region. As expected, predictions
made for locations with a higher number of samples in the training

set show higher accuracy, suggesting that the reliability of the pre-
dictions made by our models is geographically variable. A large
proportion of ECe observations are from North America and Aus-
tralia (>90%), making them the most reliable zones of predictions.
On the contrary, less than 1% of the ESP observations in the training
datasets come from Australia, resulting in higher uncertainty in ESP
predictions for Australia. Our investigation highlights the need for
training datasets with more optimized spread patterns from unrep-
resented geographical locations. In addition, for the classification
part of each predicted target variable, we produced 39-y mean of
pixel-level scaled Shannon entropy index (Hs) (54) to identify the
certainty of the classifier in binary prediction of classes (see SI Ap-
pendix, section 6.6 for calculation of Hs). The spatial distribution of
Hs is shown in SI Appendix, Fig. S23.Hs shows the certainty in model
predictions; values close to zero indicate that the classifier is more
certain about the results of binary classification while values close to
one show higher uncertainty. SI Appendix, Fig. S23 demonstrates
that generally the salinity classifier is more certain about the pre-
dictions, compared to the sodicity classifier.
In addition to the challenges associated with the spatial het-

erogeneity in the original training sets discussed above, other
limitations that could be addressed in future research include the
following:

• The input data are not uniformly scattered through the time
domain: for ECe, they are mostly gathered between 2000 and
2005, while the majority of ESP samples are related to the
1990s (SI Appendix, Fig. S18).

• Despite recent progress in harmonization of the legacy soil
profile data, the accuracy and methodology used by different
laboratories for gathering and analyzing soil samples has not
been consistent. This may influence the results of the predic-
tive models (34).

• Evaluating the propagation of uncertainty over the target var-
iables introduced by each of the 43 predictors was not feasible
due to the high computational load of ML algorithms. For a
similar reason, we were not able to generate spatially explicit
maps of the uncertainty for the predicted target variables and
we could only estimate the global uncertainty using 10-fold
cross-validation.

• It was challenging to quantify the error propagation from the
first part of the predictive models (classification) to the second
part (regression).

• In this study, we predicted the variations of soil salinity and
sodicity at a yearly time resolution, while lower temporal reso-
lutions might be required in some cases. A flash flood or heavy
rainfall event, for example, can alter the salinity/sodicity levels
of a region within weeks or even days and the two-part models
developed here cannot capture salinity/sodicity variations at
those temporal resolutions.

• The spatial resolution of the generated maps (∼1 km) is not
suitable for farm-scale and local studies, so long-term map-
ping of soil salinity and sodicity at those resolutions remains
an open research question.

• Although a fair portion of the available measured data were
sampled before 1980, the collection of predictors used in the
present study did not allow us to generate maps of ECe and
ESP before 1980s. In particular, remotely sensed predictors are
not available or accessible before 1980s, which makes it chal-
lenging to develop the salinity/sodicity map before 1980.

• Similar to the time period from 1980 to 2018, the developed
methodology opens a possibility for projection of the soil salin-
ity/sodicity, for example by the end of the 21st century, based on
the current trends in soil salinization processes. For future pro-
jections, however, both the historical and projected values of
the predictors are needed while not all of the 43 predictors used
in the current analysis had projected values for the future.
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Methods
Numerical methods have been used to provide the detailed predictions of soil
salinization dynamics, mostly based on the solutions of Richard’s equation for
water movement in soil unsaturated zone and convection–dispersion equations
of solute transport, such as Saito et al. (55) or Feddes et al. (56). However, the
application of these models remains constrained to localized and short-term
simulations as numerical investigation of the interactions between water
movement and solute transport in the root zone requires detailed knowledge of
many parameters related to soil, climate, and vegetation (24, 57) which are not
available on a global scale. Another option for modeling long-term soil salinity is
application of salt-balance equations as, for example, in the stochastic model of
soil salinity proposed by Suweis et al. (24), which takes a minimalistic approach to

modeling the soil–plant–atmosphere interactions (58). This approach requires
long-term measurement of the root zone salt concentration for tuning the
calibration parameters, but such data are not available at large scales and in
many places around the world. Moreover, although these vertically averaged
salt-balance models can provide mechanistic insights into the soil salinity re-
sponse to fluctuations in key hydroclimatic drivers of soil salinity, they do not
include information about the soil salinity originated from the parent material
from which soil is formed.

Therefore, in the present investigation, we used the digital soil mapping
framework (51, 59) to characterize the spatiotemporal variability in soil salinity.
In that framework, the soil characteristics are governed by soil-forming factors,
including climate, organisms, relief, parent material, and time. If the relationship
between soil profile characteristics (ECe or ESP in this case), soil-forming factors,

Fig. 4. Variations in the soil cell-level salinity/sodicity and country-level area of the salt-affected soils (P < 0.05). (A and D) Cell-level variations in ECe and ESP
between 1980 and 2018, respectively. Soil cell is any ∼1- × 1-km stretch of the soil. Maps are delimited to −55 and 55 latitudes and higher latitudes are shown
only for improving the visualization of the maps. (B and C) Variations in the total area of soils with salinity of ECe ≥4 dS·m−1 since 1980, at the country level. (E
and F) Variations in the total area of soils with sodicity of ESP ≥6% since 1980, at the country level (see SI Appendix, Tables S22 and S23 for annual gain or loss
in the total area of salt-affected soils for all countries/states). Countries are sorted based on the mean annual area of soils with an ECe ≥4 dS·m−1 or ESP ≥6%
between 1980 and 2018, largest to smallest.
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and their distribution is known, the soil profile characteristics can be inferred/
predicted depending on the distribution of the soil-forming factors (53).

Superior predictive performance of ML algorithms in characterizing the
relation between the soil profile characteristics and soil-forming factors has
been demonstrated in recent studies (34, 60–62). The procedure for esti-
mation of soil salinity/sodicity involves 1) collection of measured soil salinity
and sodicity data for training the model, 2) compiling and processing the
predictors (covariates) and linking them to the measured soil salinity and
sodicity, 3) mapping a relationship between measured soil profiles data and
predictors through building supervised ML models, followed by the valida-
tion of the trained models, and 4) deployment of the trained models to
predict the spatiotemporal variation of the soil ECe and ESP at the global
scale over the four-decade period considered in the study.

Data. The latest standardized soil dataset from the World Soil Information
Service (63) was used to obtain ECe (decisiemens per meter) at the global
scale and to train the models. For consistency, the electrical conductivity of
other soil-to-water extract ratios (1:1, 1:2, 1:5, and 1:10) was ignored. This
dataset contains 19,434 georeferenced profile records. Depending on the
number and depth of sampling, individual profiles may include information
for one or more soil layers. Among 73,517 samples, the ECe values of only
43,602 (11,303 profiles) samples were measured after January 1980, the time
after which the predictors required in our analysis were available; thus, the
rest of data points (29,915) were disregarded.

We complied the soil profiles data on soil exchangeable Na+ (centimoles
per kilogram) and cation exchange capacity (CEC, centimoles per kilogram)
from the National Cooperative Soil Survey Characterization Database
(https://ncsslabdatamart.sc.egov.usda.gov/), Africa Soil Profiles Database
(AfSP, ver. 1.2) (64), and ISIRC-WISE Harmonized Global Soil Profile Dataset
(WISE, ver. 3.1) (65) and divided the exchangeable Na+ by CEC to calculate
ESP as the proposed criterion for evaluating the sodicity levels in soil samples
(39). Similar to ECe, the values of ESP recorded before 1980 were excluded.
This provided us with ESP values of 207,048 soil layers (36,578 profiles in
total), which were used to train the models. The spatial distribution of the
ECe and ESP data used in training and validation of our models are illus-
trated in SI Appendix, Fig. S5.

Predictors. We selected the predictors based on the relevance to soil salini-
zation processes as follows: surface evaporation, plant transpiration, fertil-
izers, poor drainage, and a rising water-table depth (15, 66, 67). In addition,
the interactions of five main factors influencing soil formation processes,
comprising climate, topography, living organisms, parent material, and hy-
drologic dynamics, were considered (59, 63). Based on these factors, 43 en-
vironmental predictors stacked from the terrain’s elevation data, climate
datasets, atmospheric reanalysis, satellite-based remote sensing products,
soil and lithological maps, and output of hydrological models were linked to
the soil profiles data to develop predictive models of soil salinity/sodicity (SI
Appendix, Table S1).

In a broad sense, the employed predictors could be categorized into two
major groups: static (purely spatial) and dynamic (spatiotemporal). Static
predictors were mainly soil texture and topographic properties that were
assumed to remain approximately constant in the period of the analysis (1980
to 2018). Soil texture data including clay, silt, and sand content (weight
percent) were collected from International Soil Reference and Information
Centre (ISRIC) global gridded soil information at 250-m spatial resolutions at
five soil depths: 0, 15, 30, 60, and 100 cm (34). For each soil texture parameter,
we generated the averages over the mentioned standard depths using
trapezoidal rule (34). Topographic predictors comprised elevation (meters),
aspect (degrees), slope (degrees), plan and profile curvatures [calculated by a
10-parameter third-order polynomial method (68)], slope length (meters),
and terrain ruggedness index (TRI) with a square cell radius of 3. They were
all derived from the Shuttle Radar Topography Mission (SRTM) Digital Ele-
vation Database v4.1 (resampled to 250-m resolution) (69) and computed in
the System for Automated Geoscientific Analyses geographic information
system Terrain Analysis-Hydrology and Morphometry libraries (except ele-
vation and aspect) (70). Other static predictors were sample upper and lower
depths from the surface (centimeters), soil classes based on the WRB (34) soil
classification system, groundwater table depth at equilibrium (meters) (71),
the average of annual fertilizer input rate (1980 to 2018) for C3 annual and
perennial crops (kilograms of nitrogen per hectare per year of crop season;
for definition of C3 crops see SI Appendix, Table S1) (72), plant rooting depth
(meters) (73), average soil and sedimentary thickness (meters) (74), topo-
graphic index (75), and parent material lithological classes (76).

Dynamic predictors, on the other hand,weremainly related to the climatic,
hydrologic, and surface vegetative variables and were introduced to our

model to account for the dynamic processes involved in soil salinization. At
our targeted spatial resolution (∼1 km at the equator), however, these
processes can hardly influence the soil salinity on a daily or monthly basis.
Therefore, the long-term averages of the dynamic predictors were applied.
Depending on the predictor type, the averaging time window was different
to capture the effect of seasonality and interannual variations on predictors’
values. The dynamic predictors with decadal averaging time window were
annual potential evapotranspiration (millimeters per year), annual precipi-
tation (77) (millimeters per year), and monthly minimum, maximum, mean,
and diurnal temperature range (77) (degrees Celsius). The dynamic predic-
tors with 5-y averaging window were annual actual evapotranspiration
(millimeters per year), annual climate water deficit (millimeters per year),
monthly Palmer Drought Severity Index (78), and monthly root-zone soil
moisture (millimeters), all derived from the TerraClimate dataset (79). The
dynamic predictors with annual averaging window were remotely-sensed
surface soil moisture (2- to 5-cm depth; percentage of total saturation)
(80), evaporative stress factor (81), leaf area index (82), the FAPAR (82), NDVI
(83), two-band enhanced vegetation index (83), and wind speed (meters per
second) (84), as well as soil skin, layer one (0 to 7 cm), two (7 to 28 cm), three
(28 to 100 cm), and four (100 to 289 cm) temperatures (degrees kelvin) (84).
We generated a spatial layer of each dynamic predictor for each year from
1980 to 2018. The spatial resolution of dynamic variables was generally
coarser than that of the static predictors. Additionally, we applied the Land
Cover Characteristics Database (LCCDB) (85) to generate a layer of Interna-
tional Geosphere-Biosphere Programme (IGBP) land-cover classes (86) from
1980 to December 1996 as another dynamic predictor. For the period from 1997
to 2018, however, we adopted IGBP land-cover classification data from Col-
lection 6 Moderate Resolution Imaging Spectroradiometer (MODIS) Land
Cover (MCD12Q1 and MCD12C1) for years 2000, 2006, 2014, and 2018 (87).

The spatial resolution of some predictors, such as soil texture, soil classi-
fication, land cover, water table depth, and remotely sensed products, was
originally below ∼1 km. These data layers were used directly to estimate the
soil salinity/sodicity level. However, the spatial resolution of some predictors,
mostly climatic ones, was above ∼1 km. For those predictors, we used in-
terpolation methods (SI Appendix, Table S1) to obtain the data layers at
desired spatial resolution (∼1 km) and the generated layers were used for
prediction of soil salinity and sodicity. All predictors’ layers were then pro-
jected to World Geodetic System (WGS) 1984 spatial coordinates and saved
as raster datasets, except elevation, slope, slope length, TRI, plan, and profile
curvatures, which were in the World Mercator coordinates system. To esti-
mate the missing data, we filled the spatial gaps (pixels with null values) in
data layers using the average of surrounding pixels. A circle with a radius of
4 was used to calculate the missing data using the mean from the neigh-
boring cells. Even after this procedure, some data were still missing. To re-
solve this issue, the observations corresponding to those missing cells in the
rasters were disregarded, which were 618 (1.41%) observations for ECe and
9,060 (4.37%) observations for ESP.

The values of cells from rasters of static predictors were directly extracted
at locations of observations. For the predictors in the World Mercator pro-
jection, we first projected the coordinates of the observation points to World
Mercator and then extracted the values of predictors. For the dynamic
predictors, however, we binned the training datasets according to the year of
acquisition of the observations. For each soil samplewith a particular year and
observation location, values of the dynamic predictors corresponding to that
particular year and location of observation were extracted and attributed to
the measured values of ECe or ESP (all georeferenced in the WGS 1984 co-
ordinates system). Raster processing and data extractions were conducted in
ArcGIS 10.7 (88).

Training, Validation, and Statistical Analysis. The final prepared matrices for
training had 44 columns (43 representing predictors and 1 for the target
variable) and the number of rows were equal to the number of observations
for each target variable. Land cover, parent material lithological units, and
WRB soil classes were the three categorical predictors.

In the final training matrices, a large proportion of the measured ECe and
ESP values were zero or close to zero (SI Appendix, Fig. S18), and this could
lead to fitting of the models with predictions biased toward the zero.
Therefore, we investigated the patterns between predictors and target
variables using a procedure similar to the one used in two-part models in
statistics, which model the datasets featuring a large proportion of zeros
(89, 90). To that end, first we decomposed each training dataset into two
classes: 1) nonsaline (0 ≤ ECe < 2 dS·m−1; 28,635 observations or 66.6% of the
whole training dataset) and saline (2 ≤ ECe dS·m−1; 14,349 or 33.4% of the
whole training dataset) for ECe computation and 2) nonsodic (0 ≤ ESP < 1%;
109,340 observations or 55.2% of the whole training dataset) and sodic
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(1 ≤ ESP; 88,648 or 44.8% of the whole training dataset) for ESP computa-
tion. These thresholds were chosen with the aim of allowing us to divide the
training sets into classes with approximately equal number of observations
within each class. They should not be confused with the ECe and ESP thresholds
that are conventionally used for characterizing saline and sodic soils. Then, a
binary classification algorithm was trained to estimate the occurrence proba-
bility of each class determining whether the target was saline/sodic or non-
saline/nonsodic class (we stress the difference between saline/sodic class and
saline/sodic soil terms in our modeling procedure). In the next step, separate
regression models were fitted to data in each class to predict the severity of
the salinity/sodicity.

The training of the regression and classification models for predicting ECe

and ESP values was executed in the Statistics and Machine Learning toolbox
of MATLAB (R2019b). The weight of observations in model trainings was as-
sumed to be constant and equal to one. Based on a trade-off between speed,
interpretability, and flexibility of different classification and regression ML
algorithms, we used ensemble of regression and classification trees to train
different parts of the two-part predictive models and produce the spatial-
temporal maps of soil salinity/salinity. To do that, first we imported pre-
pared training sets of salinity and sodicity into MATLAB and trained the
classification and regression models for prediction of ECe and ESP using dif-
ferent available ML algorithms with their default hyperparameter options.
The results for classification and regression on saline/sodic classes for each
target variable are presented in SI Appendix, Table S6. Models based on en-
semble of regression/classification trees showed the highest speed, accuracy,
and flexibility. Therefore, we chose them for the rest of the analysis.

For classification,MATLAB built-in “fitcensemble” functionwas used to train an
ensemble of classification trees with “tree”-type weak learners. We employed
automatic hyperparameter optimization to find the hyperparameters that mini-
mize the holdout (with 25% being held out) cross-validation loss. The hyper-
parameters (91) were the ensemble aggregation method, learning rate, number
of learning cycles, minimum leaf size, maximum number of splits, number of
variables to sample, and split criterion. They were optimized by the Bayesian
optimization algorithm with the “expected-improvement-per-second-plus” ac-
quisition function.We set themaximum number of objective function evaluations
to 130 (there was no considerable variation in the observed minimum objective
function after 100 evaluations). In ML classification problems, the class imbalance
happens when the number of data in one class is considerably higher than in the
other classes. This results in poor predictive power, especially for the class which is
less represented. In our analysis, the number of samples in nonsaline class was
approximately two times higher than in the saline class. When there is a class
imbalance in a binary classification problem, other accuracy metrics, such as the
proportion of correct predictions to all predictions (accuracy), would have little use
since the binary classifier scores a high accuracy if every prediction is assigned to
the majority class. In such cases, Matthews correlation coefficient (MCC) (92) is a
more reliable accuracy measure (93) and we used this accuracy metric to evaluate
the performance of the trained binary classifiers.

Likewise, we applied the MATLAB built-in “fitrenemble” function to fit a
predictive model from the ensemble of regression trees for data within each
separate class. With hyperparameter optimization options similar to “fitce-
nemble,” the candidate hyperparameters (91) for optimization were the
number of learning cycles, learning rate, minimum leaf size, maximum
number of splits, and number of variables to sample; for regression, we used
the “LSBoost” (least-squares boosting) method for training the models.
Logarithm transform was applied to normalize the right skewness in fre-
quency distribution of the response variables (SI Appendix, Fig. S18).

Tenfold cross-validation was used to estimate the performance of fitted
models. In addition to the MCC, binomial deviance loss, misclassification ac-
curacy, precision, and recall metrics were also calculated for the fitted classifier
models. For regression predictions, root-mean-squared error (RMSE), mean
absolute error (MAE), and Nash–Sutcliffe model efficiency coefficient (NSE)
(94) in both logarithm-transformed and back-transformed scales were esti-
mated. Since the hyperparameter optimization was stochastic and it was not
possible to regenerate the hyperparameter optimization results of each
training run, we repeated the training of each of these three models 30 times.
SI Appendix, Tables S7–S12 show the results of hyperparameter optimization
and the 10-fold cross-validation for those 30 runs for each part of the devel-
oped two-part models. In total, there were two target variables, three models
for each target variable, and 180 runs. Among the 30 trainedmodels, we chose
the one with the best performance (the lowest error; SI Appendix, Table S2).
The trained classifiers with the highest MCC and regressions within each class
with the highest NSE (in total six models) were selected for the rest of the
analysis. Repeating the training process also gave us the opportunity to calculate
the confidence intervals for the 10-fold cross-validation accuracy metrics (SI Ap-
pendix, Table S2). We generated 1,000 bootstrapped samples with replacement

from validationmetrics and computed the 95% confidence intervals of themean
for each validation metric using the bias corrected and accelerated percentile
method (MATLAB built-in “bootci” function).

Prediction of Spatiotemporal Evolution of Soil Salinity at the Global Scale. The
trained models were applied to a global soil mask layer to make annual
predictions of surface soil salinity at 30″ resolution (0.008333°, ∼1 km at the
Equator) since 1980. To generate the global soil mask layer, we reprojected/
resampled the 2014 MODIS land-cover map (87) to the WGS 1984 coordi-
nates system/30″ resolution using the nearest-neighbor method and masked
out the pixels labeled as water bodies, permanent wetlands, urban and
built-up lands, and permanent snow and ice. Due to the unavailability of the
topographic predictors’ values (as input of models) at frigid zones and
higher latitudes, we focused on the pixels located between the −55° and 55°
latitudes. The final raster layer was split to tiles to facilitate the subsequent
data analysis. We converted the tiles to point feature layers, extracted the
values of static and dynamic predictors to the points in each year, and
exported the corresponding tables and points’ coordinates as text files to
make predictions using the trained models in MATLAB. Predictions and x–y
coordinates (representative of longitude and latitude) defined in output
tables were rasterized and mosaicked to generate the final maps of soil
salinity for each year over the studied period. We divided the workflow of
extraction of predictors’ values to points between 16 processes on a machine
with 16 cores through the multiprocessing Python module and the task was
completed in 6 d. Exporting and saving the attribute tables as a text file and
deployment of the trained models on the new data (∼6 billion rows) was
accomplished in nearly 60 d by running a parallel pool of 16 processes on the
above-mentioned dedicated machine.

In total, for each target variable and location with x–y coordinates, 39
predictions were made (each representing 1 y from 1980 to 2018). We cal-
culated the intraannual likelihood of saline/sodic soils occurring in each x–y
point following the approach proposed by Pekel et al. (95). By dividing the
number of years which had the ECe values ≥4 dS·m−1 and ESP values ≥6% by
the total number of studied years (39), the likelihood of surface soils with
ECe ≥4 dS·m−1 and ESP value ≥6% was computed, respectively. To under-
stand and quantify the variation in the likelihood of soils with ECe ≥4 dS·m−1

and ESP ≥6%, we divided the study period into two 19-y periods: January 1981
to December 1999 and January 2000 to December 2018. Then, for each vari-
able, we defined the parameter θ as θ = loge ((Likelihood of the 2000–2018
period + 0.5)/(Likelihood of the 1981–1999 period + 0.5)) (SI Appendix, Fig. S4).
Due to the presence of zero frequency counts in either the periods from 1981
to 1999 or 2000 to 2018, we added a “continuity correction” of 0.5 to the
frequency counts for both periods (96). We fitted a linear model to the pre-
dicted soil salinity and sodicity in each year since 1980 and the slope of the
fitted models with P < 0.05 was considered as a soil salinity long-term trend for
that location. We also generated two other layers from the soil cell-level mean
(SI Appendix, Fig. S6) and SD of the annual predicted target variables (SI Ap-
pendix, Fig. S7) between 1980 and 2018.

To estimate the annual soil area with ECe ≥4 dS·m−1 or ESP ≥6% at the
land cover, biome, climate, and national/continental levels, first we dis-
cretized the annual predicted values for ECe and ESP at each x–y position
into four classes: 0 to 4 dS·m−1, 4 to 8 dS·m−1, 8 to 16 dS·m−1, and >16 dS·m−1

for ECe and 0 to 6%, 6 to 15%, 15 to 30%, and >30% for ESP (each class
includes its left class edge). Then, we directly derived the area of each x–y
point in the WGS 1984 coordinates system for salinity/sodicity classes (as-
suming each point represents a raster pixel with the size of 0.008333°),
following the method presented in SI Appendix, section 6.5. The computed
areas with the corresponding locations were converted to raster layers.
Therefore, for each year and target variable, we produced four raster layers
from the four salinity/sodicity classes representing the area of pixels (in WGS
1984). Finally, using the ArcGIS 10.7 “Zonal Statistics” tool, the sum of areas
in each class and zone specified by biome (adopted form modified terrestrial
ecoregions of the world, available at Nature Conservancy, Geospatial Con-
servation Atlas; https://geospatial.tnc.org/), climate zone [adopted from a
world map of the climate classification after Kottek et al. (97)], and country/
continent border [adopted from global administrative areas, GADM (98)]
datasets were calculated. For delineation of land-cover zones, we compared
the IGBP land cover classes of LCCDB (85) in 1993 with MODIS-generated
land-cover map of 2018 (87) and kept those pixels which were classified with
the same land-cover type in both years. The statistics on the trends and total
areas of surface soils with ECe ≥4 dS·m−1 and ESP ≥6% were calculated at
different levels (land cover, biome, climate, country, and continent) by
summing up the area of all salinity classes with ECe ≥4 dS·m−1 and sodicity
classes with ESP value ≥6%, respectively.
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Data and Code Availability. Input training data (ground-measured values of
ECe and ESP), objects of the two-part predictive models, and thematic maps
quantifying different aspects of surface soil salinity and sodicity (0 to 30 cm)
are freely available at https://data.mendeley.com/datasets/v9mgbmtnf2/1.
The maps of surface soil salinity (ECe) and sodicity (ESP) for each year be-
tween 1980 and 2018 are available at https://doi.org/10.6084/m9.figshare.
13295918.v1. All statistics provided in this paper, in addition to further data
on spatiotemporal variability of the salt-affected soils at the cell, land cover,
biome, climate, country, and continental levels are available in a tabular

format in SI Appendix, section 5. All computer codes and further details on
methods required for regeneration of the main results presented in this
paper can be found in SI Appendix, section 6.
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